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ON THE MODAL CURVE OF NONLINEAR NORMAL MODES

Chol-Hui Pak* and Sun-Jae Park**

(Received Mech 10, 1988)

In a nonlinear holonomic conservative system having two-degree-of-freedom, the modal curves of normal mode vibrations are
investigated investimgated by the harmonic balance method. The general procedure to compute the modal curve is suggested. Even
if the linearized frequencies of the system are satisfied with the commensurability condition under which the approaches using the
perturbation method have the problem of small divisor, the modal curve can be obtained by this method, provided that the
fundamental harmonics are dominant when the normal modes are expanded in Fourier series in time domain. As an example, in
a system with cubic nonlinearity the modal curves are computed analytically and numerically to compare both results.
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1. INTRODUCTION

In this paper, we shall be interested in deriving the proce-
dure to compute the modal curve of normal mode vibrations
in nonlinear conservative systems having two degrees of
freedom.

In the normal mode of linear systems, the relation between
the generalized coordinates x and y is expressed by y = px or
x=gqy where p and ¢ are constant for all amplitude of
vibrations. In nonlinear normal modes, the relation between x
and y is not simple; Both the slope p(or g) and curvature
may be varied as the amplitude of mode increases, if the
normal mode is nonsimilar(Rosenberg, 1966).

Rand(1974) has utilized a perturbation method to compute
the modal curve of nonsimilar normal modes having suffi-
ciently small amplitudes. He has shown that the modal curve
may be expressed in the form y=px+ pox®+ pax®- px® Y,
and that the coefficients p;, i=2, 3, -+, may be unbounded if
the linearized frequencies satisfy some commensurability
conditions.

It will be shown here that the modal curve may be expres-
sed in the same form as the previous work, but the coeffi-
cients are bounded, regardless of the ratio of linearized
frequencies, provided that the fundamental harmonics are
dominant when x and y are expanded in Fourier series in
time domain. In particular, in the system of cubic nonlinearity
the modal curve tends to be a straight line when the ampli-
tude is sufficiently large. Some examples are shown to com-
pare the analytical results with computer solutions.
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2. BASIC THEORY

Consider a nonlinear holonomic conservative system hav-
ing two-degree-of-freedom. Assume that the kinetic energy T
may be expressed in the form

7*=%—(x2+y'2) Q)

where dots denote differentiation with respect to time ¢, and
the potential energy V (x, vy) satisfies the proerties

@ Vix, vy=V(-x, —y)

(b) ¥V vanishes only at the origin, and the curves (V (x, y)
=constant) form a continuum of smooth, simple, non-self-
intersecting closed curves containing the origin.

Then there is an energy integral

T+V(x, ¥)=h (2)

where & is a constant equal to the total energy of a motion
and the equations of motion may be written as

X+ Ve=0
V+ V=0 (3)

where subscripts denote partial derivatives. For a given #,
the motions remain in a closed and bounded region

() ={(x, y) . h—Vi{x, ¥) 20}

The normal mode is a periodic motion which passes
through the origin and two rest points. The modal curve
traced by x (¢) and y (¢#) of normal mode in the xy-plane is
called similar if the modal curve is straight, and nonsimilar
otherwise.

Due to the property (a) of V (x, v), every trajectory passes
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through the origin, and ¢ is the period of a normal mode.
Then it is readily verified that for all ¢

x(=8)=—x(t), y(=t)=—y(f) 4
(deliod (-0 o

Therefore, the solution of normal modes may be expanded in
the Fourier series given by

x(t):glAnsin(anl)wt (6a)

y(l):g)1 Basin(2n—1) wt (6b)

. . 2
where @ is the circular frequency of normal mode, w= 77-{

Substitute (6) into the equations (3) of motion and set the
coefficients X,, Y, of harmonics equal to zero to obtain

Xnlw, A: B:d)=0, =1, 2, 3, =+, i=1, 2, 3, *=
YVulw, A:;, B)=0, »n=1, 2,3, =, i=1,2, 3, -~
(7
where the following relation has been utilized
sin®(2/—1) 8 sin” (2m—1) G sin’ 2n—1) 0
(8)

M
= 21 Csin(2:—1)6

for all natural number /, m, », a, 8, 7, and
M=a@lI-1)+8C2m—1)+7r(2n—1).

The harmonic balance method is applicable to compute A,,
B, and @. Choose the first N terms of (6). Then from (7) 2N
equations are obtained in terms of 2N +1 unknowns A,, Ba,
n=1,23,-, N, and w. Hence A, and B, may be solved in
terms of . By making the use of (8), (6a) may be rewritten in
the form

N
x“"(l)«”figl disin(2i—Dwt, =1, 2, =, N 9

where the harmonics of order higher than 2N —1 are neglect-
ed. Now it is claimed that the modal curve may be approx-
imated in the form

v=Pix+ Pex*+-+ Pyx*"1, (10)

Substitute (9) into (10) and equate the coefficients of har-
monics given by (6b) to obtain the linear equations

N
B;:JEI dszj. i=1, 2, -, N, (11)

Then P; are readily computed whenever the (N X N) matrix
D =(d.;) is nonsingular.

It can be shown that if the order of magnitude of A, is
greater than A,, =2, 3, -, N, then the matrix D is nonsin-
gular. In fact, it is found after some calculations that the jth
column of D contains homogeneous terms of order 2;—1 in
A, A, -, Ay and that every element of D at the main
diagonal and above it contains terms of the highest order
A% ! but the one below the main diagonal contains that of
A1, n<j. This implies that the determinant of D does

not vanish and the assertion (10) is valid.

By taking the number N sufficiently large, the approxi-
mate solution so obtained will approach to the exact solution
(6), and the modal curve expressed in (10) becomes an infinite
series.

3. THE CHARACTERISTICS OF
MODAL CURVES

The coefficient P, in (10) is the slope of modal curve
measured from the x-axis. The other coefficients P,, Ps, -
may represent the curvedness of modal curve. It will be
shown that these coefficients are bounded. The curvature of
modal curve is written as

d*y
- dx? _ 6Py +20Px*+42Pux’+ -
x Ay NP [+ (P3P 5P +) T2,
e

(12)

Therefore, if y is bounded for all x in the closed interval
between zero and the x-amplitude of normal mode, then it is
clear that coefficient P, Ps, -+ are bounded. The curvature
may be rewritten in the form

x(8) :Yii;ﬂ (13)

where v is the velocity of normal mode and y may be expres-
sed as a function of time along a normal mode. Then x(¢) is
a periodic function and continuous except at t:f where p=
0. Since every trajectory intercepts the boundary of " ()
orthogonally, both the numerator and denominator of (13)

vanish at ¢=--, and hence the L’Hospital’s rule may be

4
applicable :
lim d .
lim | =% dt (VX =Vey)
Lol e B
4 lim ’d(l ’3)
-5 dt

T
t= 1
Therefore, the function y(¢) is continuous at every ¢ and is
bounded.

1t will be shown that the coefficients P, Ps, -+ are bounded.
Suppose on the contrary that one of coefficient P, is un-
bounded. Then the curvature vanishes at every point of
modal curve because the denominator of (12) has higher order
of magnitude than that of numerator. And the slope of modal
curve, as computed by (10), is infinite. This implies that the
resulting modal curve represents the x =( mode, which occurs
in a special case Vi(x, v)=0, and this mode would not be
represented in the form (10). This contradicts the supposition
that P; is unbounded.

It will be shown that every modal curve asymptotically
approaches to a straight line as the amplitude of normal
mode becomes sufficiently large, if the solutions, represented
by Fourier series (6), is dominated by the fundamental har-
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monics,
A+ BI> A+ B> A5+ Bi> -, (14)

The coefficient P,, P, --- may be computed by (11). By the
condition (12), the determinant 4 of matrix D= (d;;) has
been demonstrated to be nonsingular. In fact, the highest
order term of 4 is found to be A%*. The coefficient P, may be
calculated by

4,

Pj: J j= 1‘ 2, (N N (15)
where
divi diz - div
d2i d22  don
A= 1 ds1 dsz - dsn
’dNI dv2 * daw .
di dv: v dijor By dijer o din

d21 dzz dzjv-l Bz dzJ'H dzN

4d;= dsy ds2 d3jw] Bs d3j+1 < dan
Pl : : : :

! dwy dnz - de«l N de+1 o dan

Further calculations show that the element &,; of matrix D at
i=j+1 has the order of magnitude A%~', ;=1, 2, 3, -,
N. Then it is readily found that the highest order term of 4;
is AY* %Y. B, Therefore the order of P, is AT* " V-B,;, J
=1, 2, ---, N. This implies that P;, 7=2, 3, -+, N,
vanishes when the amplitude of normal mode is sufficiently
large, and hence the modal curve approaches to a straight
line,

4. SYSTEMS HAVING CUBIC
NON-LINEARITY

Consider a systern whose potential energy V (x, y) is the
sum of quadratic and homogeneous form of order four in the
generalized coordinates x and y written in the form

Vix, ») =—é (@3x2+ wiy?)
+ax'+bxy + cx®yi 4 dxyd+ ey’ (16)

where @, and @, are the linearized natural frequencies.
Assume that parameters g, b, ¢, d and e are such that V (x,
y) is positive definite in the whole xy-plane. Then it satisfies
the properties (a) arid (b), and hence the theories described in
sections 2 and 3 are applicable. The equations of motion are
written as

¥+ wix+4ax®+3bx*y+2cxy* +dy3 =0
Y+ wiy+ bx*+2cxty+3dxy* +4eyi= (17)

First, we shall find all the possible combinations of system
parameters so that a similar normal mode exists. To compute
them we have to make use of the fact that a similar normal
mode exists if there is a constant number p or ¢ such that y
= px or x = qy satisfies the equation (17) of motion. When y
= px is substituted into (17) and ¥ is eliminated, we obtain for

all «x,

(5= b)Y Px+[M(P)—L(P)Plx*=0 (18)
where

L(P)=4a+3bP+2cP*+dP?
M(P)=b+2cP+3dP?*+4eP>,

Since (18) is a finite power series, each coefficient must
vanish to obtain

(wWi—-w) P=0 (19a)
and
M(P)—PL(P)=0, (19b)

Consider two cases: @, ¥ w, and w, = w.. In the case of @,
+ wq, We have P=0 by (19a), and p=0 by (19b). This is the
y=0 mode. Similarly, by taking x =gy, we have the x=0
mode with 4=0. In the case of w, = w,, (19a) is identically
fulfilled, and similar modes are obtained by solving the fourth
order equation (19b) for P. This equation is identical with
that of the associated nonlinear homogeneous
system(Rosenberg, 1966) given by

T:*,; (x2+3%)
V=ax'+bxty+cx?y*+dxy® +ey’, (20)

It had been shown elsewhere(Pak and Shin, 1985 ; Pak and
Yun, 1985) that there are at least two distinct real roots in
(19b). Then there are generically two or four similar modes,
and the non-generical case corresponds to three similar
modes containing two simple roots and a double root.

In the case of w, = ws,, it is not possible to find the similar
mode y =0 if 4#0. In expressing the equation (17) of motion
with »#0, the selection of coordinates seems to be inadequate
if one expects that at the small energy % the normal mode
may be described in the neighborhood of y =0. However, it is
always possible to find an orthogonal transformation of
coordinates such that in new coordinates the kinetic energy is
written in the form (1), and the potential energy in the form
(16) with =0. Let the transformation of coordinates be given
by

x=c0s80 ¥ —sinf v
x=8Inf ¥ +cosf y (21)

Substitute (21) into the potential energy V (x, v) of (16) to
have the resulting expression in the form

Then by taking 4 =0, (19b) is obtained where P=tan 6.

In computing the modal curve of nonsimilar normal modes
which is the extension of linearized mode y =0, it is assumed
that w,+ w. and p+0. For the first approximation of modal
curve, assume the solution in the form

x = Aisin wt+ A,sin 3wt (22a)
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y=Px+ax®. (22b)
Substitute (22b) into the first equation of (17) to obtain
¥+aix+L(P)x*+al (P)x°=0, (23)

Then the approximate solution of (23) may be written as (22a)
where

=it L(P)A2+ a'L (P) Al (24a)

8
A= ~—@—~2—[1L(P>Ai+ﬁaL 2N (24b)
Substitute (22b) into the second of (17) to obtain
Pi+3ax*i +ax®*+ M(P)x*+aM (P)x*=0, (25)

Substitute (22a) into (25) and set the coefficients of sin w! and
sin 3wt equal to zero to obtain

As(wi- o) P+[307(3 Sar-Eaza,
+14,3)- M'(P)Dl]
(3 ar-Tara Tz,
Az(w§*9w2)P+[3w2(—%A +2 a4,
+ 483 43)+ 07 (P) D |

=) Fata+ ) (26)

where

1>1:§~A%~iAm2+EA%A§—

1)2:“1

D gz LAAL

6A +—A Az—%AiAH%A%A%

+- AA+ A5

By solving (26), P and ¢ may be found. Since (26) are non-
linear and coupled, a closed form of solution is not possible.

We shall restrict our task to find the modal curve of
nonlinear normal modes having small amplitudes. Since the
mode considered here is the extension of linearized mode y =
0. P is assumed to be small. Then the following approxima-
tions are possible ;

L(P)=4a
M(P)=
W —CUz+3dA2

Therefore, (26) are rewritten as a linear system of equations

(wh— 2)P+(9 A)a:—%bA%

<w5—9w2>1>+(e7)a: —%bAi. 27)

Solve (27) to obtain

p=L(3 -6 )2 pa1) (282)

=10 +w2>(% 43) (28b)
where

a=0t o (@i- o) — 3 (@3—907) Az, (29)

provided that A 0. It is not difficult to show that A does not
vanish except the case of wi=w., where A is computed as

A:%aA“(a)?wLBaA?).

As described previously, if @,=w., every normal mode is
similar, and hence the case of w,=w. may be eliminated.

On the other hand, when the amplitude is very large, the
approximate modal curve can be calculated through the
following procedure: The approximate modal curves are
assumed in the form of eq. (22a, b). By substituting eq. (22a)
into eq. (22b) and neglecting the high order terms of sine
function, we can obtain

y=P(A:sin wt+ A,sin 3ot)
+a (A sin wt+ Azsin 3wi)?

x[A1P+<%A3,-%A%Az+%A,A%)a]sin wt
+[A2P+<—21(/1?+%A21A2+%A%)a]sin3wt (30)
Also, the solution y is assumed in the form

vy = Bisin wt + B:sin 3wf (31)

as two term approximation of eq. (6b). By comparing the
coefficient of corresponding harmonics in eq. (30) and eq. (31),

{g;}: Al(%Aa—%A%Aﬁ%A,A%) o

A~ Larr a3 )
or

_ (= A1+6A1A4,+3A3) B — (343—34314,16A4,A%) B:
(—A1+341A.+3A4145-34.4%)
e AULB—AB)
(— ATV 3A14,+ 341433449

We can show that the highest order of magnitude of numera-
tor of @ is less than that of denominator. Therefore, the
value of ¢ vanishes as A, approaches to infinity, under the
assumption of condition (14). This means that the modal
curve approaches to a straight line as the amplitude becomes
sufficiently large.

It is readily seen from (28b) that ¢ vanishes as A,
approaches to zero. Therefore, it may be concluded that the
modal curve of nonsimilar normal mode is close to a straight
line if the amplitude is sufficiently small or large, regardless
of the commensurability of linearized natural frequencies.



ON THE MODAL CURVE OF NONLINEAR NORMAL MODES 91

5. NUMERICAL EXAMPLES

We consider the cubic nonlinear two-degree-of-freedom
system which has the following coefficients of potential
energy :

N P _
a—27, b 7 6_428’ d=1, e=2,
In the case, the numerical analysis by using the 4th order
Runge-Kutta method is performed to find nonlinear normal
modes x (/) and y(¢) when the linearized frequencies have
the values ;

w1=4; w:=0.5w, 2w, 3w
The trajectories of rest point of normal modes are plotted in
Fig. 1, 2, 3, respectively. To express the degree of straight of

nonlinear normal modes, the shift of modal curves with
respect to a staight line is defined as

DS= —[AK?-: tan(fd.—6,)

from Fig. 4.
The normal modes x (¢) and y (¢), so obtained, are expand-

30t n,
201 nz
10
h
0
20 40 X
-10f
-20}
-30}
|2

Fig. 1 The trajectories of rest point of normal modes in the case

- 3 - 1 ~ = 5 — o= == =
thata~—27. b—7. 6_428‘ d=1, e=2, wr=4, w:
0.5w

¥
S ll
60}
I n
a0} '
20} n,
er 50 X
—2(}.
—40:
~-60 }
l;
Fig. 2 The trajectories of rest point of normal modes in the case

—9d Ll 5 = =
that a~27. b~7, c—428, d=1, e=2, w\=4, w:
2w,

ed as Fourier series by using the Fourier series algorithm to
obtain the coeffients of corresponding harmonics of x (¢) and
y(t) as follows :

x ()= Aisin wt + Assin 3wt + Assin Swt + -+
v (t) = Bisin w! + Bssin 3wt + Bssin 5wi + -,

As a result, when the modal curves are expressed as
v=Pix+ P+,

the coeffients up to the 3rd order polynomial by the procedure

4
P h
6ot
s} ny
20}
I Ny
[o] + + "+
50 X
~20f
~-40
-60 |
I,
Fig. 3 The trajectories of rest point of normal modes in the case
93 ,_1 .5 - _ _ —
that 1172"7:, b= ,?', C~—4‘TZ§. d=1, e=2, wr=4, w:=
3an
NORMAL
MODE
X
Fig. 4 Nonsimilar normal mode
DS
't
'
W0+

DEGREE OF STRAIGHT

i L N . , . L
T ST R L PP TR SR
ENERGY

Fig. 5 Degree of straight of modal curves

((1:2?'. b:w.}.. c:4-§§. d=1, e=2, wr=4, w:=2w:)

. Mode {,, extended from a linearized mode
. Mode /,, extended from a linearized mode
. Bifurcated mode #,
. Bifurcated mode #,

D%
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of section 2 are obtained and tabulated in Table 1, 2, 3. The The degrees of straight of modal curves in Table 2 are
mode names /; and /, mean the modes extended from linear- shown in Fig. 5. It shows that the degrees of straight of modal
ized modes, and #, and z, mean the bifurcated modes in Fig. curves vanish as the amplitudes of normal modes become
1, 2, 3, respectively. sufficiently small or large.

Table 1 Fourier coefficients of x(¢) and y(¢), and the coefficients and the degree of straight of modal curves in the case that

a=23, b=1, c=12. d=1, e=2 wi=4 w:=050.
Fourier coefficients of x(¢) Fourier coefficients of y (¢) Coefficients of d
h modal curve DS Mode
name
Ay As As B Bs Bs P, P,
0.1E+02 0.97E+0 | —0.12E—1 0.29E—3 0.76E—2| —0.25E—3 0.49E—5 0.74E—2 0.66E—3 | —6.57E—4 N
0.13E+0 0.11E—2| —0.66E—4 | —0.12E+1 0.40E—1| —0.14E—2| —0.85E+1| —0.89E+2 1.67E—2 ls
0.1E+03 0.21E+1 | —0.63E—1 0.26E—2 0.67E—1| —0.26E—2 0.10E-3 0.30E—1 0.23E—3| —1.22E-3 4
0.65E+0 | —0.17E—1 0.71E-3| —0.24E+1 0.96E—1} —0.43E—2| —0.35E+1| —0.42E+0 1.38E—2 I
0.9E+05 0.13E+2 | —0.58E+0 0.25E—1 0.16E+1| —0.74E—1 0.32E—-2 0.12E+0 0.98E—6| —1.93E—4 N
0.63E+1 | —0.27E+0 0.16E—1| —0.12E+2 0.56E+0| —0.34E—1| —0.20E+1| —0.83E—4 7.52E—4 Iz
0.10E+2 | —0.45E+0 0.22E—1 0.81E+1| —0.36E+0 0.18E—1 0.78E+0 0.98E—5| —7.58E—4 23
0.10E4+2 | —0.47E+0 0.24E—1 0.75E+1| —0.33E+0 0.17E—1 0.69E+0 0.79E—-5| —7.32E—4 N2
0.1E+10 0.13E4+3 | —0.55E+1 0.49E+0 0.19E+2 | —0.79E+0 0.71E-1 0.14E+0 0.10E—9| —2.05E—-¢6 A
0.66E+2 | —0.29E+1 0.15E+0 | —0.13E+3 0.58E+1| —0.31E4+0| —0.20E+1| —0.71E-38 7.27TE—6 1
0.96E+2 —0.39E+1 0.33E+0 0.96E+2| —0.39E+1 0.35E+0 0.99E+0 0.13E—8 | —7.45E—6 i
0.12E+3 | —0.54E+1 0.24E+0 0.60E+2| —0.27E+1 0.12E+0 0.50E+0 0.43E—9| —5.93E—6 2

Table 2 Fourier coefficients of x(¢) and y(¢), and the coefficients and the degree of straight of modal curves in the case that

a:2—§n b:%, c:4—2-5§, d=1, e=2, vn=4, w.=2w.
Fourier coefficients of x (¢) Fourier coefficients of y(¢) Coefficients of Mod
h Y modal curve DS oce
Ay As As B\ B, Bs name
P P,
0.32E—02 | 0.15E—~7 | —0.44E—9| 0.28E—11| 0.10E—1 0.37E=5] 0.20E-5 0.69E+6 | —0.27E+21| 1.19E—7 A
0.20E—1 0.60E—5| 0.34E—5} —0.17E~7| —0.35E—-8 | —0.57E—11| —0.14E~5| 0.17E—2 | —6.95E—7 l2
0.1E+05 0.33E+1 —0.14E+90 0.60E—2 0.66E+1| —0.25E+0 0.10E—1 0.20E+1|—0.27E—2 7.14E-3 I
0.45E+1 —0.19E+0 0.81E—~2 | —0.65E+1 0.24E4+0]—0.98E—2 | —0.14E+1 0.12E-2 | —1.00E—-2 l2
0.4E+06 0.12E4+2 | —0.54E+0| 0.24E—1 0.14E4+2| —0.64E+0| 0.29E—1 0.12E4+1{—0.20E—4 1.44E-3 I
0.96E+1 ~0.42E+0 0.20E—1 | —0.18E+2 0.80E+0|—0.37E—1 | —0.19E+1 0.63E—4 | —1.47E-3 A
0.18E+2 | —0.82E+0| 0.36E—1 0.52E4+1| —0.22E+0| 0.10E—1 0.28E4+0|—0.21E-5 7.7T7TE—4 n
0.18E4+2 | —0.82E+0| 0.41E—1 0.41E4+1| —0.18E+0| 0.89E—2 0.22E4+0 | —0.16E—5 6.27E—~4 N2
0.1E+10 0.96E+2 | —0.39E+1| 0.35E+0 0.96E+2| —0.39E+1| 0.35E+0 0.10E+1|—0.55E-8 2.96E—5 I8
0.66E+2 | —0.29E+1| 0.15E+0 | —0.13E+3 0.58E+1|—0.31E+0 | —0.19E+1| 0.28E—7 | —2.90E—5 A
0.12E4+3 | —0.57E+1[—0.51E+0 0.60E+2| —0.28E+1|—0.25E+0 0.49E4+0 | —0.16E—8 2.37E—~5 m
0.13E+3 | —0.64E+1|—0.61E+0 0.19E+2| —0.92E+0 | —0.88E—1 0.14E+0 | —0.39E—9 8.31E-6| n.

Table 3 Fourier coefficients of x(#) and y(¢), and the coefficients and the degree of straight of modal curves in the case that
3 1 5

a=2—7--, b=7. c=4%. d=1, e=2, w1=4, w:=3w.
Fourier coefficients of x(¢) Fourier coefficients of y(¢) Coefficients of Mod
h Y modal curve DS ode
Al A3 AS Bl BS B5 name
P P,
0.5E+03 0.84E—1 | —0.29E—2| 0.63E—4 0.24E+1| —0.18E—1 0.11E-2 0.30E+2 | —0.39E+3 4.59E-3 L
0.34E+1 | —0.12E4+0| 0.63E—2 | —0.40E—1| —0.89E—3 0.28E—4| —0.13E—1 0.21IE—3| —2.85E~3 A
0.2E+4-07 0.18E+2 | —0.79E+0} 0.39E—1 0.22E4+2| —0.96E+0 0.47E—1 0.12E+1| —0.11E—4 1.71E-3 5
0.14E+2 | —0.64E+0| 0.30E—1 | —0.27E+2 0.11E+1| —0.56E—1| —0.19E+1 0.33E—4| —1.76E-3 l>
0.3E+07 0.20E4+2 | —0.89E+0| 0.47E—1 0.24E+2| —0.10E+1 0.56E—1 0.12E4+1| —0.71E—5 1.40E~-3 N
0.15E+2 | —0.71E4+0{ 0.32E—1 | —0.30E+2 0.13E+1| ~0.61E—1| —0.19E+1 0.22E—41 —1.43E~3 la
0.30E+2 | —0.13E+1}| 0.73E—1 0.89E+1 | —0.38E+0 0.21E—1 0.29E4+0| —0.78E—6 7.81E~4 m
0.31E+2 —0.13E+1| 0.72E—1 0.66E+1| —0.28E+0 0.15E—1 0.21E+0| —0.55E—6 5.92E—4 n2
0.1E+11 0.17ZE+3 | —0.81E+1| 0.58E+0 0.17E+3| —0.81E+1 0.58E+0 0.10E+1| —0.14E—8 2.49E~5 A
0.11E+3 | —0.55E+1| 0.27E+0 | —0.23E+3 0.11E4+2| ~0.55E+0 | —0.19E+1 0.74E—8 | —2.44E—5 I,
0.21E+3 | —0.10E+2 | 0.72E+0 0.10E+3 | —0.51E+1 0.36E+0 0.49E+0 | —0.45E—9 2.00E-5 ni
0.23E+3 —0.11E+2| 0.81E+0 0.34E+2 | —0.16E+1 0.11E+0 0.14E+0| —0.10E—9 7.03E—6 n2
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6. CONCLUSIONS

In this paper, we studied on the modal curves of normal
modes of two-degree-of-freedom system. As a result, we
obtained the following results:

(1) The method to compute the nonsimilar normal modes is
proposed by utilizing the harmonic balance method.

(2) If the fundamental harmonics are dominant when the
normal mode x (#) and y (¢) are expanded in Fourier series in
time domain, the coeffients P:(; =2, 3, ---) of modal curves
represented by

y=Pix+ Pox®+ Pax® -

are bounded regardless of the ratio of linearized frequencies.

(3) The modal curves approach to a straight line as the
total energy of the system becomes sufficiently high or low.

(4) The modal curve of a system with the cubic nonlinearity
can be approximately considered as a straight line in whole
xy-plane.
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